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Abstract. We consider the steps necessary to set up a perturbation theory for the chiral 
invariant self-interaction of massless bosons. In each step we find something different to 
what we might naively expect from past experience of other interactions, but we can decide 
what the canonical procedures give and then, wherever possible, replace the canonical 
procedures by the more naive Feynman rules and see what compensation has to be intro- 
duced into the interaction. 

We start with the ordered hamiltonian given by Charap, and find that its use is equivalent 
to the use of the expected ( -  Yi,,,) term, but modified by two singular terms. The first, 
being proportional to S4(0), is well known. The second, proportional to  (S3(0))*, comes 
from the correct use of Wick’s theorem with our specified ordering. We also find that we 
cannot use normal ordering to rid ourselves of tadpole contributions, though this is not 
because the required normal ordering violates the chiral invariance. It is a characteristic 
of any such self-interaction theories and therefore has important consequences for many 
superpropagator calculations. 

1. Introduction 

Following the developments in nonpolynomial field theory has come the suggestion 
that chiral invariant lagrangians could perhaps become the basis of a perturbative, 
dynamical field theory. This is a departure from their more common use with the tree- 
graph approximation as ‘effective’ lagrangians, that is, solely a calculation device for 
yielding current algebra results. The use of a nonlinear realization of the chiral symmetry 
on pseudoscalar meson fields makes the interaction nonpolynomial in those fields and it 
may be that superpropagator techniques can be used to specify otherwise arbitrary 
renormalization constants (Lehmann and Trute 1972, Ecker and Honerkamp 1972, 
Abdus Salam 1971). Accepting that there is some motivation for looking at a perturba- 
tion series we must ask : what are the Feynman rules to be used in calculating the ampli- 
tudes? This is the question to which we address ourselves for the self-interaction of 
massless pseudoscalar mesons. Many of the problems will be general features of any 
two-derivative polynomial, or nonpolynomial, interaction and we expect to see similar 
problems, with similar resolution, arise in the proper treatment of quantum gravity. 

The usual steps in setting up a perturbation theory are : 
(i) Construct a classical hamiltonian from the classical lagrangian and impose 
canonical commutation relations to give a quantum mechanical hamiltonian in the 
Heisenberg picture. 
(ii) Change from the Heisenberg to the interaction picture (or from interpolating 
fields to in/out fields if we follow the LSZ formalism) through a unitary transforma- 
tion, and hence to the Feynman-Dyson solution for the S matrix. 
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(iii) Use Wick’s theorem to expand time-ordered products. 
(iv) Use Matthews’ T* ordering and replace $,, by -Zint to exhibit manifest 
Lorentz covariance when we have derivative couplings. 
(v) Rid ourselves of tadpole (closed loops starting and finishing at the same space- 
time point) contributions by normal ordering. 
Now, our chiral interaction has two derivative couplings and is a nonpolynomial 

function of the fields and, when we check the application of the above five steps, we find 
that something is different in every case from what we might naively expect on the basis 
of experience with better known interactions ; for example, of the type e(@A or g$$d,,$. 
To be more specific, the quantum hamiltonian has an ordering ambiguity due to the 
presence of noncommuting factors, the transformation of (ii) may take us from a non- 
linear function of the fields to a linear function, proper use of Wick’s theorem involves 
Wightman functions as well as the expected Feynman propagators, and the T* theorem 
does not apply. In some cases the departure from a naive treatment has been previously 
noted: the correct use of T* ordering has been made by many authors (Charap 1971, 
Gerstein er al 1971) and steps (ii)and (iii) have been considered by Okabayashi er al(1972) 
and Suzuki and Hattori (1972) respectively though the ordering problem has either been 
overlooked or not treated correctly. 

This ordering has now been specified by Charap (1973) who demands that it be 
consistent with chiral invariance of the hamiltonian. We will trace the effect that the 
specified ordering has on each of the steps above. Wherever possible, having seen what 
the canonical procedures give us, we will then adopt the more common, naive procedures 
and see what change in the interaction we need to compensate for this. That is, we are 
aiming for the interaction to use when we ignore the ordering, make naive use of Wick’s 
theorem and use T* ordering, such that the results are those which derive from the 
correct canonical procedures. We find that the naive interaction - Zin, is modified 
by two highly singular terms. The first, which is proportional to S4(0), is well known and 
is a result of the T* ordering prescription. The second, proportional to (S3(0))2 is a 
result of the effect of the specified ordering upon the use of Wick’s theorem. 

Perhaps the most surprising result concerns the normal ordering. Contrary to an 
often repeated assertion, we find that it is not the chiral invariance and its consequent 
specified ordering which stops us normal ordering. We cannot normal order because 
we have only one coupling constant, which is a common property of all self-interactions 
of this type. This inability to rid ourselves of the singular tadpole diagrams has important 
consequences for the many superpropagator calculations where normal ordering has 
been assumed. 

2. The ordered hamiltonian 

The work of Charap (1973) and Parish (1973) specifies for us an energy-momentum 
tensor which has the Sugawara current+urrent form. The ordering of noncommuting 
factors is specified uniquely (up to a unitary transformation of all the operators) by 
asking that it be consistent with chiral invariance. We shall be content here with quoting 
the ordered hamiltonian density which follows. 

where the carets indicate that the fields $i(x),  and their conjugate momenta Ai@), are in 
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the Heisenberg picture. 

iti = +(iij, &} (2.2) 
where i , j  = 1 , .  . ., 8 if the chiral group is SU(3)x SU(3), and i, j = 1, .  . . , 3  for 
SU(2) x SU(2). 

I . I  , 

,2.2F"'F"J = (E - l ) i j  

[iti(x, t),  c$jcv, t)] = - idij P ( x  -y). 

(2.3) 
where a = 1, . . . , 16 for SU(3) x SU(3) and a = 1, . . . , 6  for SU(2) x SU(2). The canonical 
equal-time commutator between it and c$ is : 

(2.4) 
The dimensional coupling constant 2 = f; ', the inverse of the unrenormalized pion 
decay constant ; and g i j  is the chiral invariant metric tensor which is in general a non- 
polynomial function of the fields. We note that, if we ignore the ordering, then .&x) 
would be the classical hamiltonian that follows from the following classical lagrangian : 

U(X) = )a,&$ja%p. (2 .5 )  

[&", c$'(x)] = iFai(&x)) (2.6) 

The functions Fa' give the group transformations of the fields 

where the {&"} are the axial and vector generators. We make no distinction between 
upper and lower group indices. 

Having taken this result we prepare for a perturbation theory by casting the interac- 
tion into the interaction picture, we will denote this by operators without carets. As 
usual we assume the existence of a unitary transformation U[a, o,], with an initial condi- 
tion on some space-like surface o,, U [ o o ,  a,] = 1, such that 

4 ~ x 1  = ~ [ a ,  ao16i(x)u- 1 0 9  001 x E a. (2.7) 
The transformation is specified by asking that it satisfy the Tomonaga-Schwinger 
equation 

where 

q,, = u@,JJ-? (2.9) 
The perturbation theory rests on being able to solve for U with a Volterra integral 
equation, and thus we must check that the integrability condition is satisfied : 

[ q n t ( x ) ,  &nt(y)l = 0 x, y E a. (2.10) 

This is trivially satisfied for space-like a if there are no derivatives in the interaction, and 
it is a fairly straightforward matter to check that the presence of powers of the momentum 
in a specified ordering does not change the result. Note that to do this we need make no 
assumptions about the form of Use of (2.9) puts (2.10) into the Heisenberg picture 
and we know. Having verified (2.10) for space-like a we can specialize to the hyper- 
surface normal to the time-like vector q,, = (1,O). Then taking tRe gradient of the 
non-covariant form of (2.7) gives 

a p 4 i ( x )  = ~ ( t ,  t J a p $ i ( X ) U - ' ( t j  to)-i~p[~ini(t), 4i(x)1 (2.1 1) 
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which yields the expected result 

Uv$i (x )U- ’  = V(#&). (2.12) 

The transformation of $ i  tells us how iti transforms and once again we emphasize that 
we need no assumption about as we can rewrite the commutator in (2.1 1) in terms 
of the known Heisenberg picture operators. With the use of the definition (2.2) we have 

ufip-1 = 4,. (2.13) 

Note that this transformation has taken f i i  (nonlinear in the fields) into the linear r$i, 
but this is just what we require of the interaction picture wherein the operators must 
satisfy free-field commutation relations. 

Thus in the interaction picture we have 

&JX) = $I.’{ 4, F }  { 4, F }  - *&$ + *v(bgvf#l (2.14) 

2 E g - l  

where we suppress the group indices if no confusion is likely to occur. Correct use of the 
transformations (2.7), (2.12) and (2.13) has been previously made by Gerstein er a2 (1971) 
for the unordered interaction. 

3. Use of Wick’s theorem 

Our Feynman rules come from the expansion in &nt of such objects as : 

TQ(x,, . . . , x,)exp 

for some function Q of interaction picture fields (or in/out fields if we follow LSZ pro- 
cedures). The subscript c is telling us to normalize with the vacuum-expectation-value 
of the S matrix which has the effect of leaving contributions from connected diagrams 
only. The expansion is facilitated by the use of Wick‘s theorem which states : 

T(UV/ .  . .  XY) = : U V  . . .  XY:+ :U’ V... XY:+perms+ :etc (3.2) 

where one commonly assumes that 

U ’ V  = (OlT(UV)lO) (3.3) 

but this is only true if the operators U and V come from different hamiltonians, that is, 
they have different time arguments. If they belong to the same hamiltonian 

U‘V‘ = (OlUVlO) (3.4) 

where the order is as it was in the hamiltonian. With no derivative couplings this is a 
trivial distinction because the fields commute at the same space-time point and we can 
consistently use the Feynman propagator (3.3) 

( O ~ & X ) ~ ( X ) I O )  3 A’(0) = AF(0). (3.5) 

But with derivative couplings this is not the case. For instance, if we have the one- 
derivative tadpole contribution $(x)l&x)’, then the correct use of Wick’s theorem with 
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the Wightman function (3.4) gives a singular contribution whereas the naive use with (3.3) 
gives nothing. That is, 

A+(o) = -+is3(0) (3.6a) 

whereas 

AF(0) = 0. (3.6b) 

Thus the correct use of Wick’s theorem would appear to give different results for at least 
one-derivative tadpole diagrams, but the specified ordering modifies this conclusion. 
We notice that, if our hamiltonian has its noncommuting factors of 4 and 4 symmetrized, 
then instead of getting a A’(0) we would have A1(0), which is zero : 

(3.7) 
Thus the result is the same as ignoring ordering and using (3.3). Looking at the ordered 
form of &,, given by (2.14) we see that the ordering does not affect two-derivative tad- 
poles, nonderivative tadpoles or proper exchanges betweer two vertices, but the only 
one-derivative tadpole diagrams which escape being zero through (3.7) are the ‘rabbit 
ears’ diagrams shown in figure 1, which come from the contractions : 

(3.8) 

A“ = (01 {dw 4 ~ ~ ~ ~ l O ~ l x = 0  = 0. 

{$I,  F”} { fp, F’}. 

Figure 1. A ‘rabbit ears’ diagram. The arrows indicate derivative coupling. 

These diagrams contribute a -(A+(0))2 = i(S3(O))’ and leave behind, for further contrac- 
tions, 41/(4) where, 

Thus, if we: (i) ignore the ordering; (ii) use naive Wick’s theorem with consistent use of 
(3.3); we have to add in the ‘rabbit ears’ contribution. The compensated interaction 
%{A,) can therefore be written, with use of (2.3), as 

(3.10) = + 4 ~ $  + + V ~ B V ~  + ( ~ ~ ( 0 ) ) ~  v(4) 
G = g-I-1.  

A similar result has been achieved by Suzuki and Hattori (1972), though they did not 
work with the chiral invariant ordering (see the discussion in Charap 1973). They note 
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that, with their definition of e(0) = i, e(t) being the step function, 

(01 { W), W’)} IO> - (01 T {  w, W’)) IO> L t ’  = 0 (3.11) 

and thus a term totally symmetrized in its noncommuting factors gives the same results 
as the naive use of Wick’s theorem gives. Indeed, we can use the canonical commutation 
relations to write 

(3.12) 

We note that, when the noncommuting factors are the field and its time derivative, (3.1 1) 
is true by virtue of both terms being separately zero whatever the value of O(0). 

The existence of the (S3(0))’ terms in (3.10) has also been supported by Dowker and 
Mayes (1971). 

1 - 2 1  ,+, * F} {4, F} = sc4, {4,  g-% +(s~(o))~v(+).  

4. Manifest covariance 

In pursuit of manifest Lorentz covariance we rewrite (3.10) as 

RI:! = - g,,, + ;wg - 114 + ( ~ 3 ( 0 ) ) 2 1 / ( 4 )  

yin1 = +a,$gap4.  (4.2) 

(4.1) 
where 

The time-ordering prescription in the perturbation theory also leads to noncovariant 
terms : 

(4.3) (01 T~,4(x)av4(o) IO> = ia,avAF(x) - iv,vvS4(x). 
With certain types of derivative interaction, for example $ypt@,4, Matthews’ theorem 
(1949) tells us that the noncovariant parts of the hamiltonian and propagator exactly 
cancel each other to all orders in the S matrix, but here it is well known that this is not the 
case (Charap 1971, Gerstein et a1 1971). If we use the T* ordering prescription 

(01 ~*a,4(x)av4(o)lo> = ia,avAF(x) (4.4) 

RI$ = - gin, + 3iS4(0) ln(det g) + (S3(0))’ V(+). 

then we must replace the second term in (4.1) with a singular, covariant function, to give 

(4.5) 
This, then, is the compensated interaction to use if we : (i) ignore ordering; (ii) make naive 
use of Wick’s theorem; (iii) use T* ordering. 

There is some evidence from low-order calculations (Charap 1970, Suzuki and 
Hattori 1972) that there will be no S4(0) or (S3(0))’ contributions to the final S matrix 
because the two extra terms in (4.5) cancel contributions from the -Yi,,, part. If this 
conjecture is true, then we need only use the most naive Feynman rules with qn1 = - gin, 
and drop all S4(0) or (S3(0))’ terms whenever they occur. Apart from the problems of 
normal ordering, we then see some justification for the superpropagator calculations that 
have been carried out in the past. 

5. Tadpole diagrams 

We have seen that, if we use the form of the interaction in (4.5), we have no tadpoles 
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appearing which have one derivative in them. It is also true that there are no two- 
derivative tadpoles, which may not be at first evident because the Feynman propagator 
satisfies the inhomogeneous Klein-Gordon equation 

oAF(x) = S4(x) (5.1) 

and this would seem to introduce S4(0) terms. In the canonical theory we know there are 
no such contributions because the Wightman function satisfies the homogeneous 
equation 

IJA'(x) = 0. (5.2) 

It is also true that the two-derivative tadpoles do not appear with the use of &'!A,' because 
the trace in p and v of (4.3) is again zero. Therefore it is the T* ordering prescription 
which seems to introduce them, thus it must be the second term in &'!:; which cancels 
them. This is precisely what does happen because 

In det g = Tr In g = Tr(g-$g2 + . . .) (5.3) 
and the Tr g provides the cancellations that we need. 

We are .thus left with only the nonderivative tadpoles and the question of normal 
ordering now arises. We see that we need only normal order the functions of di which 
occur in (4.5) which has no consequence for the chiral invariance. It is the equivalent of 
normal ordering the functions of 4i in (2.14) (when rewritten with the use of (3.12)) which 
does not spoil the chiral ordering. Initially we might have expected to normal order the 
whole interaction which would have violated the invariance. 

However, despite the easing of this restriction, we find that we still cannot rid our- 
selves of tadpole contributions. We will illustrate with the self-interaction of a massless, 
singlet boson field 4 : 

3", = F ( K 4 )  (5.4) 
where F may be a polynomial or nonpolynomial function and K is a dimensional coupling 
constant such that ~4 is dimensionless. To rewrite (5.4) such that it is in normal order, we 
use the formal expression 

4'' = :exp -A- @' (: :;2) 

A A'(0) = AF(0) 

where we apply the exponential operator on the right-hand side and interpret the 
resultant terms as being in normal order. In general, then, using the operator on F gives 

(5.6) 

the only exception being the familar case when F is bilinear in the fields. If (5.6) were an 
equality we could throw away the additive infinite C number because of the connected- 
diagrams-only prescription in (3.1). As it is, the most that we can ask is that normal 
ordering does not change the form of our interaction 

(5.7) 

F ( K ~ )  = :G(K'A, ~ 4 ) :  # :F(K~):+C(K'A) 

F ( K @ )  = C(K'A) : F ( K ~ )  :. 

exp(lc4) = exp()rc'A) :exp(lc4) :. 

This can be easily solved to give F ( K ~ )  = exp(q5) whereby 

(5.8) 
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We note that, in the case of the interaction of a multiplet of hermitian fields, 4 = { 4i} we 
can make use of 

(Ol4i4jIO) = dijA (5.9) 

to normal order a general function of the multiplet fields with the operator 

exp (: -A- ai. ’a@). 
As an example, if we had an isoscalar function of the pion triplet A, we could ask for the 
function that satisfied the equivalent of (5.7) and would find the solution (regular at zero 
field strength) 

sinh(m) sinh( K Z )  -- - exp(&K’A) : ___ 
x 71 

(5.10) 

where 
7 

x = dlC. R. 

Thus, if we have interactions of the form e$$ exp(K4) or g$$ sinh(k-x)/n which might 
serve as prototypes for gravity-modified quantum electrodynamics or chiral invariant 
pion-nucleon interaction we can absorb the multiplicative infinite C number into a 
redefinition of the unrenormalized major coupling constant e or g. In the case of a self- 
interaction with only one coupling constant, this is not possible, we are stuck with our 
infinity, though we have achieved the summing of all tadpole contributions into it. A 
question for future study is whether or not a proper renormalization program could 
absorb the infinity into a wavefunction renormalization. 
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